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Abstract
This paper examines how organization theory can benefit from
advances made in the interdisciplinary field of complex systems
theory (CST). Complex systems theory is not so much a single
theory as a perspective for conceptualizing and modeling dy-
namic systems. The field of complexity is described in terms of
the characteristics of systems that are typically the subject of
its study, the type of analytical tools used by researchers in this
field, and the recurring paradigms that characterize this research
perspective. The concepts of self-organized criticality and self-
organization and their relevance to organizational studies are
examined. The potential usefulness of these concepts is illus-
trated in the context of organizational evolution and social net-
work analysis. An alternative model of organizational evolu-
tion, based on biological evolution, is proposed and
propositions are developed. Unlike traditional models for or-
ganization, this model does not rely on an algorithm of opti-
mization of a fitness function. The problem of self-organization
is approached from the viewpoint of random graph theory and
is applied to the analysis of social networks. Finally, important
issues in using concepts from the field of CST are discussed. It
is suggested that the immediate benefits of CST may be as a
framework that facilitates conceptual elaborations and encour-
ages formal modeling; both activities may provide fresh and
deep insights into organizational phenomena.
(Complex Systems Theory; Computer Simulations; Or-
ganizational Evolution; Organizational Adaptation; So-
cial Network Analysis)

Introduction
The tradition of viewing organizations as systems has had
a long intellectual history in organizational theory (Katz
and Kahn 1966, Ashby 1968). For decades, organization
theorists have invoked concepts from general systems

theory such as homeostasis, cybernetic control, and dy-
namic equilibrium to describe organizational phenomena
such as stability and adaptation. Organizations are now
routinely viewed as dynamic systems of adaptation and
evolution that contain multiple parts which interact with
one another and the environment. Such a representation
is so common that it has acquired the status of a self-
evident fact. Yet the profound implications of such a
viewpoint for theory and analysis have not been ade-
quately examined or exploited. Specifically, any repre-
sentation of organizations as dynamic systems of adap-
tation and evolution implicitly assumes that organizations
are “complex systems” as described by scholars in the
emerging multidisciplinary field of complex systems the-
ory (CST). In this paper we propose that by explicitly
recognizing the complex system characteristics of orga-
nizations and pursuing their implications, organization
theory (OT) can profit from the advances made in the field
of CST.

The interface between OT and CST is in many ways
natural and inevitable. At an abstract level, OT and CST
grapple with similar conceptual issues such as dynamic
change, adaptation, and evolution in complex systems.
They seek answers for similar questions such as naturally
occurring patterns in systems, emergence of new forms,
etc. (Stacey 1995; Cheng and Van de Van 1996, Brown
and Eisenhardt 1997). In this paper, we are primarily con-
cerned with how OT can benefit from work done in CST.

Some introductory remarks about CST are in order.
First, complex systems theory is not so much a theory as
a perspective for theorizing and modeling dynamic sys-
tems. By cultivating this perspective, organization theo-
rists can enhance their conceptual and analytical tool kit
in significant ways. Second, just as CST is not a single
theory, it would be wrong to think of CST as a set of
mathematical recipes or preexisting algorithms that can
be applied directly to OT. The interface between CST and
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OT is more complicated. As we will show, reconcep-
tualization of organizational phenomena has to precede
the application of CST to OT. The potential benefits of
taking a CST viewpoint of organizations is as much theo-
retical as it is analytical.

We begin by attempting the challenging task of char-
acterizing CST. CST is not so much a theory as a hetero-
geneous ensemble of often exciting but not always pol-
ished mathematical observations, beyond the confines of
local analysis. Our aim is not to present an exhaustive
coverage of CST. Rather our aim is to identify CST par-
adigms that are especially relevant to the study of orga-
nizational phenomena. On this basis, four areas of CST
are given preferred attention—complex adaptive systems,
self-similarity, self-organized criticality, and self-
organization. We discuss each of these concepts in detail
and illustrate their applicability to OT. Following this, we
demonstrate the usefulness of adopting a CST perspective
by turning to two important areas in OT—evolution of
organizational forms and social network analysis. In each
instance, we use CST to develop new propositions and
models of the focal phenomenon. We hope that these ex-
amples will serve to provoke interest in this fertile and
unexplored area of research.

Complex Systems Theory
CST is a highly interdisciplinary research perspective. Its
intellectual roots can be traced back to the early history
of mathematics, linguistics, economics, and biology
(Schroeder, 1990). Regardless of their disciplinary affil-
iations, researchers who use a CST perspective share a
common fascination for the new insights into the dynam-
ics of systems that are made possible by the advent of
powerful computers. The emergence of CST as an im-
portant research perspective owes much to the phenom-
enal increase in the processing capacity of computers.
The increased capacity enables the exploration, though
numerical techniques, of the dynamic content of nonlin-
ear systems beyond the limits of local analysis.

As CST is more of a research perspective than a single
unified theory, the option of presenting the basic assump-
tions and tenets of a theory is not available. A more ap-
propriate way of introducing CST is to describe the dif-
ferent facets of this perspective. Accordingly, we describe
CST from three viewpoints—the characteristics of sys-
tems studied by CST researchers, the analytical tools used
to study these systems, and the dominant paradigms that
characterize the CST approach.

Characteristics of Complex Systems
Although CST deals with complex systems, there is no
universally accepted or clearly articulated definition of

the concept of complexity in CST. This problem is not
unique to CST however. The concept of complexity
seems inherently problematic as it is used to mean dif-
ferent things in different fields. Even within the same field
it often connotes different things. Take the example of
task systems in OT. It is generally agreed that the com-
plexity of a task system is an important feature that has
a significant bearing on the performance of the task sys-
tem. However, there is little agreement on the definition
of the term complexity. It is used to refer to the number
of elements in a task, the degree to which the task is
programmable, the number of exceptions in the pro-
cesses, etc. (Scott 1992, p 229).

As it turns out, this multiplicity in meanings is not a
problem for CST. Like organizations, complex systems
are difficult to define but easy to recognize. In order to
describe complex systems, we take a fuzzy set approach.
Complex systems may be seen as exhibiting any of a set
of basic characteristics. We will consider two commonly
observed characteristics of complex systems: large num-
ber of interacting elements and emergent properties.

Large Number of Interacting Elements.Complex sys-
tems tend to be made up of a large number of elements
that interact with one another. Such interactions are typ-
ically associated with the presence of feedback mecha-
nisms in the system. These interactions in turn introduce
nonlinearities in the dynamics of the system. The ele-
ments that make up a system could be atoms, sand par-
ticles, machines, people, etc. A complex system can be
made of diverse types of elements. The system can a
priori be as heterogeneous as the modeler may desire. But
the tendency is to try to elicit complex behavior out of
simple rules or interesting emerging properties which are
not natural extensions of the rules of interactions. Parsi-
mony is therefore often considered a blessing. Organi-
zations are complex systems in that they are made up of
individuals, groups, and departments that interact with
one another by way of feedback mechanisms.

Emergent Properties.In addition to the presence of a
large number of interacting components, complex sys-
tems often exhibit “emergent properties,” i.e., the ap-
pearance of patterns which are due to the collective be-
havior of the components of the system. These patterns
are not to be confused with the well-known ability of the
human mind to detect patterns even when the data is ran-
dom. The emergent properties we refer to are indepen-
dently observable and empirically verifiable patterns. A
commonly cited example of an emergent property in
physics is the temperature or pressure of a gas, modeled
as emerging from a large number of molecules hitting
each other. An example of emergent property that is rele-
vant to OT is the distribution of size of business firms in
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Table 1 Characteristics of Complex Systems

CST Concept Description Examples/Applications

Self-Organized Criticality (SOC) Dynamical state of a complex system main signature:
“1/flaw”

Ubiquitous
Famous examples:
• Sandpile CA
• Punctuated equilibria

Self-Organization Spontaneous creation of complex structure as a re-
sult of the dynamics of the system

• Biological evolution
• Emergence of hierarchies

Complex Adaptive Systems (CAS) CA made of interactive adaptive agents Used to “explain” self-organization or study
communities of intelligent agents

Cellular Automata (CA) Computer simulation technique using a grid (discre-
tized space), interactive components, and iterative
rules of evolution (discretized time)

Wide range of applications:
• Artificial life
• Communities
• Laboratory to study emergent properties

an economy. If one plots the size of the largest firms (by
assets or number of employees) as a function of their rank
order, in a log-log plot, it will approximate a straight line
with slope close to�1 (Simon 1955).1 This is a very
robust observation, in that it is true today just as it was
four decades back. The appearance of this regularity is
an example of emergent property because its origin is
mysterious and cannot be easily explained by modeling
the individual firms. Later in this paper we re-examine
this observation from a CST point of view. The main
features of the characteristics discussed so far are sum-
marized in Table 1.

While the above characteristics are commonly ob-
served, the concept of chaos is also often associated with
complex systems. However, this is difficult to justify. Al-
though the concept of chaos has played an important role
in the sociology and history of CST, it corresponds to a
different field. Chaos does not refer to a class of systems,
but to the dynamic behavior of a large class of nonlinear
systems characterized by high sensitivity to initial con-
ditions (May 1976, Jackson 1993, Devaney 1989). Com-
plex systems do not need to be chaotic to be “complex,”
and chaos is not closely related to complexity. In other
words, “chaos cannot explain complexity” (Bak 1996, p.
31). For example, an emergent property like self-
organized criticality, which we will discuss at length, cor-
responds to a dynamic state, different from chaos. This is
not to say that the concept of chaos may not be useful for
OT (see Thietart and Forgues (1995) for a discussion of
the potential usefulness of the ideas underlying chaos for
organizational theory). Mathematical chaos suggests that
simple models can have very complex dynamics. Re-
search in CST on the other hand suggests that complex

models may exhibit very simple dynamics. It is in this
latter way that CST is most useful in the study of orga-
nizations.

Analytical Tools Used in CST
A second way of characterizing CST is to consider the
analytic tools used by researchers in this area. CST relies
heavily on the use of mathematical modeling and com-
puter simulations to study the dynamics of complex sys-
tems. Cellular automata (CA) are particularly useful an-
alytical tools used by CST (Wolfram 1984). CA are a
class of computer simulations. Their most useful feature
is that with simple rules, they can reveal complex behav-
ior. The ingredients of a typical simulation are a certain
number (which can be large) of interactive agents and a
set of rules of interactions between agents. Starting with
some initial condition, the simulation consists in applying
the rules through several iterations. The famous game of
life of Conway (Berelamp et al. 1982) is an example of
cellular automata2 with simple rules, few components,
and a rich dynamic content (Bak et al. 1989). CA are very
versatile tools that can also be applied to the study of
pattern formation, artificial life (Adami 1998), fluid dy-
namics, etc.

The book The Evolution of Cooperation(Axelrod
1983) has inspired a fruitful line of research that uses CA
to model societies. The rules of interaction between
agents tend to be based on game theory, like tit for tat or
prisoner’s dilemma (Nowak and Sigmund 1992). This ap-
proach has also been used to study the economic orga-
nization of a system of agents having very simple rules
of behavior and interaction (Epstein and Axtell, 1996). A
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major attraction of CA in such analysis is that they pro-
vide a good laboratory in which to elicit emergent prop-
erties (Forrest 1991).

CST Paradigms
The final and perhaps the most useful way of character-
izing CST is to identify the recurring paradigms that dom-
inate research approaches in this area. Etymologically a
paradigm is an example of a rule. We use the term “par-
adigm” to refer to examples in a sense similar to Kuhn
(1962) where it denotes a set of concepts or systems of
explanations shared by the members of a scientific com-
munity. These paradigms convey the new perspectives
that CST may bring to the study of dynamic behavior of
organizational systems. In the following section, we dis-
cuss some CST paradigms that are potentially relevant
and useful to OT: complex adaptive systems, self-
similarity and fractals, self-organized criticality, and self-
organization.

Complex Adaptive Systems (CAS).CAS represents a
class of complex systems which has great potential for
OT. Using this paradigm, CST researchers model systems
as being composed of interactive adaptive agents. The
complexity results from the adaptive behavior of the
agents (Holland 1995). CAS is potentially useful in study-
ing important organizational phenomena such as the
emergence of hierarchies (Simon 1973) and self-
organization. A simple example of CAS would be many
amino acids building a protein. A complicated example
would be many chemical and biochemical compounds
building a cell. In both cases the result is an aggregate
with very different properties from its parts, and in the
case of the cell, also an adaptive agent.

One weakness of CAS as a paradigm for understanding
self-organization is that the adaptive behavior of the
agents is an input, and the physics of the self-organization
is buried in the assumptions. Seen from the perspective
of physics, self-organization requires a mix of conditions
like being out of equilibrium (Nicolis and Prigogine
1977), and the dynamic possibility of building new stable
dynamic units made from the aggregation of several com-
ponents. The adaptive nature of the agent is what a phys-
icist would like to “explain,” not assume.

Self-Similarity and Fractals. CST researchers often
look for evidence of self-similarity in the systems that
they study. Self-similarity means that at some level of
abstraction, the system exhibits invariance under a change
of scale. In other words, the functional relationships be-
tween different subsystems in a system are similar to the
relationships between elements in each subsystem. One
example of self-similarity in OT is suggested by Lomi
and Larsen (1996). Using a computational model, they

point out that population ecology studies in OT find simi-
lar results for density-dependence whether the study fo-
cuses on a city (e.g., Baum and Mezias 1992) or an in-
dustry (Hannan et al. 1995).

Fractals are the most common and powerful mathe-
matical tool to analyze self-similarity (Mandelbrot 1982).
Fractals are mathematical spaces. They are called fractals
because their “dimension,” computed according to spe-
cific rules, is not an integer. Fractals were originally in-
vented or discovered by Mandelbrot a few decades ago.
They are pervasive in nature such as the shape of coast
lines and ferns (Barnsley 1988). Fractals and multifractals
are an important part of the culture of CST (Feder 1988).
They seem to have an unlimited realm of applications
(Pickover 1996), from percolation and fractures to crystal
growth and diffusion limited aggregation (Bunde and
Havlin 1991).

The relation between self-similarity and fractals stems
from the way fractals are often built. They can be the
result of iterating an infinite number of times the same
operations or maps (Barnsley 1988). These operations do
not have to be linear. As a result, the fractals are by con-
struction invariant under those maps. The invariance un-
der a linear map, like a change of scale which is the basis
for self-similarity, is therefore characteristic of a fractal.
In the context of OT, this kind of approach could consist
in detecting or suspecting similarities between different
scales and building a mathematical object to represent it,
which can be used to establish in a quantitative way that
fractals can be used to model this self-similarity. This is
an area of great significance to OT as the issue of cross-
level analysis is a recurring theme (for example, research
on the relationships between individual learning, group
level learning, and organizational level learning (Cohen
1996)).

Self-Organized Criticality (SOC).SOC is an intrigu-
ing dynamic concept which seems to be so ubiquitous in
complex systems that Bak (1996) tends to identify SOC
with complexity or to treat SOC as a basic feature of
complex systems. The concept of SOC is best understood
by turning to two widely studied examples in the CST
literature—sandpile cellular automata (Christensen et al.
1991) and punctuated equilibria (Bak and Sneppen 1993).

The sandpile cellular automata attempts to model the
behavior of a sandpile. However, it is not a model of a
realistic sandpile. It is a CA where grains of sand fall one
by one on the ground, building a cone. The cone becomes
steeper and steeper up until the moment where the slope
reaches a critical value. Adding more grains of sand leads
to avalanches. One can show on computer simulations
that the frequency of the avalanches is inversely propor-
tional to their size (this is referred to as the 1/f law). The
system is then “Self-Organized Critical.”
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Studies of punctuated equilibria model the progress of
biological evolution (Gould and Elridge 1977, Gould
1989). In this case the models capture a well-known fea-
ture of biological evolution—it does not proceed
smoothly. There are periods of fast evolution between
long moments of stagnation. In this example, the evi-
dence of SOC is the fact that the frequency of the periods
of large evolutionary activity is inversely proportional to
the size of the evolutionary activity. Once again, this dis-
tribution follows the 1/f law.

The evidence of SOC or its most conspicuous signature
is the so-called 1/f law (which in fact means 1/fa, a� 2).
1/f distributions are a ubiquitous phenomenon which is
found in physics (Press 1978), quasars, river flows, brain
activity, size distribution of business firms (Ijiri and
Simon 1977), earthquakes (Gutenberg and Richter 1956,
Sornette 1994), biological evolution, linguistics (Zipf
1949), etc. SOC is an emergent property which may, in
some cases, correspond to a dynamic optimization. For
example, the heart is healthiest, i.e., it has the highest
level of adaptability, when the heart rate has a 1/f power
spectrum (Kobayashi and Misha 1982, Goldberger and
Rigney 1990).

The apparent universality of the 1/f law may reflect the
ubiquity of SOC, although the reason for it is still mys-
terious. SOC is a problematic concept. As the two ex-
amples of the sandpile CA and punctuated equilibria sug-
gest, it seems to cover different types of dynamic
situations. The SOC displayed in sandpile cellular autom-
ata corresponds to a dynamic equilibrium resulting from
the combined effect of a linear instability (the slope of
the cone getting steeper than the critical value), and a
nonlinear feedback or dissipation (avalanches). In the
case of punctuated equilibria, SOC does not reflect a dy-
namic equilibrium but is part of the dynamics of change.
To be able to differentiate between different types of dy-
namic situations, conceptual refinements to SOC are of
the essence.

In addition, it is not always easy to differentiate SOC
from very different explanations of the occurrence of 1/f
law. Consider the example of the size distribution of firms
that was introduced in our earlier discussion of emergent
properties of complex systems. A variety of explanations
have been offered to explain this distribution, but none
has been unanimously accepted (Sutton, 1997).

To explain the ubiquity of the 1/f law, Simon (1955)
demonstrated that 1/f distributions correspond to the sta-
tionary state of stochastic processes where the probability
that an event occurs is proportional to the number of times
it has occurred in the past.3 This interpretation provides
a semantic argument, which is basically Gibrat’s law of
proportional effects (Gibrat 1931). This is used to justify

the relevance of 1/f distribution in a large variety of cases
like the Zipf’s law in linguistic (Zipf 1949), the distri-
bution of the number of publications among scientists,
the distribution of wealth in some societies, or the distri-
bution of the sizes of large cities. The problem with this
interpretation is that it implies that to explain the size
distribution of firms, the rate of growth of a firm would
have to be proportional to its size. However, this is not
what is observed. In fact, the relative rate of growth of
firms seems to decrease with their size (Sutton 1997).

1/f distributions may have a still completely different
origin. They may reflect the tail of a stable non-Gaussian
distribution (Samorodnitsky and Taqqu 1994), which is
known to have an asymptotic power law behavior
(Mandelbrot 1963). This would mean that the distribution
of sizes of business firms is the sum over a large number
of independently identically distributed random events,
with large variance (Gnedenko and Kolmogorov 1954).

The fact that the 1/f law is one of the most fundamental
and conspicuous features of complex systems raises the
interesting possibility that the ultimate explanation for the
size distribution of firms may reside in CST. If the size
distribution of firms is due to SOC, it raises an important
question: what are the underlying dynamics responsible
for this distribution? It may be related to the dynamics of
growth of business organizations in a competitive econ-
omy. Or it may reflect a dynamic equilibrium of some
sort or even a dynamic optimum.

It is likely that 1/f laws may occur in other areas of OT
as well. The SOC paradigm may be potentially useful in
prompting organizational researchers to pay increased at-
tention to identifying underlying distributions. It may also
provide dynamic explanations as an alternative to tradi-
tional stochastic explanations.

Self-Organization. Self-organization is a dynamic
process by which under its own dynamics, a system spon-
taneously gets increasingly more organized. Biological
evolution can be construed as the ultimate form of self-
organization, i.e. a dynamic process leading systemati-
cally to increasing levels of organization and complexity.
Self-organization in biological evolution seems to be an
accelerating process. Most of biological evolution took
place in the last 15% of earth’s history (Leakey & Lewin,
1995). Self-organization is a feature of any group of in-
dividuals and organizations (Thompson, 1967). Self-
organization supposes an increase of information. This
means that the system does not evolve towards its max-
imum of entropy, i.e. an important part of its dynamics
takes place out of equilibrium (Nicolis & Prigogine,
1977).

Systems that consist of a large number of interacting
elements can display self-organizing behavior. Using a
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Boolean cellular automata, Kaufmann (1993) found in-
dications of self-organization in systems of interacting
sites. These are systems where the state of a site is af-
fected by the state of its neighbor(s). Self-organization in
such systems means, that over time, the different sites
build spontaneously nontrivial, organized configurations
of states. In such systems, the level of connectivity (i.e.
the number of sites with which a given site interacts) is
a crucial parameter (Derrida & Weisbuch 1986a; Derrida
& Stauffer, 1986b). When the connectivity is very low
(each site interacts with only one or two other sites), these
systems do not tend to display any interesting behavior.
But when the connectivity is allowed to increase, these
systems can display self-organizing behavior before be-
coming chaotic (“Life is at the edge of chaos” (Langton
1990)).

No good characterization of self-organizing systems
exists yet. The few known ones tend to evolve slowly and
go through metastable states (Paczuski et al. 1995). They
do not display the systematic tendency toward increasing
and accelerating self-organization which characterizes the
biological world.

One major source of interest for CST is the prospect
that it could be a stepping stone to understanding self-
organization. The difficulty in conceptualizing biological
evolution within the context of classical physics is an old
and well-known problem. The dynamics of life seems to
deviate systematically from the second principle of ther-
modynamics. This is explained by pointing out that living
matter violates some key ingredients needed to derive that
principle: it is an open system out of equilibrium. That
life is not precluded by the second principle of thermo-
dynamics is not enough. What is still missing are exam-
ples of dynamic systems which self-organize in a way
similar to what happens in life. The fact that some sys-
tems studied under the aegis of CST seem to have ele-
ments of self-organization suggests that CST may even-
tually provide the key to this tantalizing question. Hence
self-organization is a major preoccupation in CST. This
has great significance to OT as this problem is consistent
with the view of organizations as self-evolving systems
that are neg-entropic (Katz and Kahn 1966).

Applying CST to OT—Some
Illustrations
The foregoing discussion was aimed at providing an over-
view of CST. In this section, we turn to the task of dem-
onstrating how CST concepts can be extended to the
study of organizational phenomena. What follows is not
a complete model of organizations based on CST. Such
an exercise is beyond the scope of this paper. We attempt

the more modest task of approaching some important ar-
eas of organizational research from a CST viewpoint. Our
intention is to provide concrete examples to show how
CST can inform and enhance OT.

CST approaches are best suited to the study of phe-
nomena that are dynamic and nonlinear, and that exhibit
emergent properties such as self-organization. In addi-
tion, CST is only useful when the phenomenon can be
represented mathematically and/or computationally.
Based on these criteria we chose two areas of research in
OT to illustrate the application of CST—organization
evolution and social network analysis.

Ecological research on organizational adaptation and
selection study the effect of the environment on organi-
zational mortality (Baum and Oliver 1991), rates and ef-
fects of change (Miner et al. 1990), and performance
(Barnett and Carroll 1995). The central question in this
area is the evolution of a population of organizations. The
research designs and analytical techniques used in these
studies, with a few recent exceptions (Bruderer and Singh
1996, Lomi and Larsen 1996), rely primarily on the col-
lection and analysis of empirical data. This is an area
where the use of CST-based computer simulations can
provide fresh insights.

Another influential approach to the study of organiza-
tions is social network analysis. This approach to struc-
tural analysis views social structures as composed of net-
works of people who are linked to one another by
different types of ties (White 1970). An example of a
“network tie” in an organization would be people who
work with one another. Network perspectives view or-
ganizations as networks of individuals, industries as a net-
works of organizations, and so on. In recent years social
network analysis has emerged as an important perspective
for studying organizations. It has acquired several theo-
retical and methodological tools from graph theory
(Krackhardt 1994, Wasserman and Faust 1994). The eti-
ology and dynamics of networks continues to be a central
research concern in social network analysis (Nohria and
Eccles 1992). Questions about how networks are formed
and how they continue to evolve and change over time
are fundamental to this area of research (Dorian and
Stokman 1997). Here again, CST approaches may pro-
vide fresh insights.

Organizational evolution and social network analysis
are also compelling because of the hint of self-
organization underlying both areas of inquiry. This is
very attractive from the perspective of CST, in which self-
organization is a central preoccupation. Our discussion of
self-organization is designed to convey the ambiguous
beauty of this fascinating but also frustrating area in com-
plexity theory. A few spectacular results have generated
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a lot of speculative papers. There are still major holes and
limitations in our present understanding of self-
organization which tends to be concealed by a veil of
confusion. We spend some time emphasizing the differ-
ence between what has been observed mathematically,
which we refer to as “dynamic self-organization,” and
what some want to see in it, i.e., the seeds of an expla-
nation for biological evolution. The latter poses a much
more formidable challenge. We use the detour of random
graph theory to characterize this challenge. Random
graph theory allows us to discuss how the self-
organization relevant for OT still differs from “biological
self-organization” and to connect it to the analysis of so-
cial networks.

Extending the principles and practices of CST to OT
may imply increased use of computer simulations. How-
ever, it must be noted that, quite independent of CST, the
use of computer simulation approaches has been gaining
ground in organizational studies (see Carley 1995 for an
overview; also Prietula et al. 1998). In fact, research
based on simulation methodology such as Cohen, March,
and Olsen’s (1972) garbage can model and Nelson and
Winter’s (1982) evolutionary theory of economic change
has had significant impact on OT. In recent years, com-
puter simulations have been used to study organizational
learning (Levinthal and March 1987, Lant and Mezias
1990, Carley 1992), organizational adaptation and selec-
tion (Levinthal 1997), and organizational evolution
(Lomi and Larsen 1996). What lends a distinctive char-
acter to CST-based computer simulations is the role of
paradigms such as SOC and self-organization in the de-
velopment and analysis of models.

Evolutionary Models of Organizations
The emergence of population ecology theory in OT has
given rise to number of ecological models of organiza-
tional change. Organizational changes affect the anatomy
and physiology of organizations (Powell and DiMaggio
1991). The forces of organizational changes have internal
components and external components (Hannan and
Freeman 1989). In principle, the purpose of organiza-
tional change is to improve the performance of an orga-
nization (Amburgey and Rao 1996). In practice, and this
is one problem with setting up an adequate evolutionary
model for organizations, the logic of organizational
change cannot be reduced to maximizing a well-defined
fitness function.

Simon (1964) points out that it is doubtful whether de-
cisions in organizations are directed toward achieving a
goal. It is easier and clearer to view decisions as being
concerned with discovering courses of action that satisfy
a whole set of constraints. According to Simon it is this

set that is most accurately viewed as the goal of the ac-
tion. Hannan and Freeman (1989) go even further and
argue that organizational change is largely uncontrolled
and the consequences of designed structural changes are
difficult to anticipate. By combining these viewpoints, we
can conclude the following:

PROPOSITION1. The evolutionary dynamics under-
lying organizational changes is a mix of randomness and
reaction to external and internal pressures. Although it
is not driven by “fitness,” it is successful only if it leads
to an increase of fitness.

In this section we discuss a class of evolutionary mod-
els inspired by the OT literature (Bruderer and Singh
1996), but directly abstracted from the CST literature
(Bak and Sneppen 1993), which captures the essence of
the previous remarks. In CST language the organizational
structure is an emergent property resulting from the in-
teractions of many adaptive agents (Cohen 1984).

We represent organization forms as a set of “routines”
(Ri i � 1, N) in the sense of Nelson and Winter (1982).4

The same model would be possible (and in fact may be
easier to test against data) if organizations were described
as a set of interacting “units.” To each unit/routine is at-
tached a numberqi between zero and one which measures
its performance level.

Assuming that the ecology of organizations shares a lot
of similarities with biological ecology, we use an exten-
sion of the rules introduced by Bak and Sneppen (1993)
to study biological evolution from a CST standpoint. The
model of Bak and Sneppen is the simplest evolutionary
model existing today with dynamic content that is rich
enough to include features such as punctuated equilibria,
dynamic self-organization, and 1/f power spectrum.

In the class of models we propose, organizational forms
are characterized by a tree diagram (Figure 1) where the
vertices represent the “units/routines,” and the edges the
connections between them. To each unit/routine (in Fig-
ure 1) is attached a number between zero and one which
measures its performance level. (These nodes can also be
seen as people where the links between people can be
“works with” ties). The performance levels are drawn
randomly.

Two kinds of changes may occur: changes which affect
the performance of some units/routines without affecting
the overall structure of the tree; and changes affecting the
shape of the tree (modifying the connection structure, de-
leting some, or adding new units/routines). In this paper,
we consider only changes that affect performance without
affecting the topology of the tree.

Several rules of evolution are possible. We choose a
rule that has the advantage of being simple and natural:
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Figure 1 Example of an Organization Form
The shape reflects the structure of the organization. Here it has been
chosen arbitrarily.

Figure 2 The Gap (Reference Performance Level) Climbs a
“Devil’s Staircase”

This is seen as an evidence of the fractal nature of the space in which
the gap lives.

Figure 3 Corresponding Evolution for the Fitness Function
Here the fitness function is an arbitrary linear combination (with
weights) of the performances of individual unit/routines.

i) identify the node which has the lowest performance
level, and ii) draw a new random value for the perfor-
mance of that unit/routine, as well as for all the routines
which are directly connected to it. In the organizational
context, such rules are typically implemented by initi-
ating changes in, or shutting down, the worst performing
units. This assumes that a change in a unit/routine affects
the performance of the units/routines connected to it. This
procedure is iterated again and again. This model incor-
porates a rule of evolution that is different from those
used in population ecology (Bruderer and Singh 1996).
This suggests the following:

PROPOSITION2. It is possible to define evolutionary
rules of changes of organizational forms which are not
directly elicited from the fitness functions.

More generally, this approach acknowledges that max-
imizing a fitness function is not a necessary feature of
models of evolution. This means that organizations can
evolve although they are not trying to maximize their
fitness function. This approach permits us to investigate
the evolution of organizational forms by using a realistic
set of rules that are consistent with the boundedly rational
property of organizational systems.

An interesting quantity in this model is what Bak and
Sneppen call the “gap,” but which we will refer to as
“reference performance level” (RPL). RPL is the largest
value of performance that the lowest performing unit/rou-
tine had in the history of the organizational form (see
Figure 2).

The value of this quantity at the beginning is the value
of the overall minimum. If the new minimum is higher,
it takes that new value; otherwise it stays at its original

value. By definition, RPL can only increase. It represents
a kind of reference threshold for low performance. The
higher the RPL, the higher the lowest performance has
been in the organization. An increase in RPL measures
an increasing ability of the organization to maintain a
high minimum performance. This turns out to be possible
up to the point where the RPL becomes stationary (see
Figure 3).

As we can see from Figures 2 and 3 (showing the evo-
lution of the overall fitness of the firm), the evolution is
divided in two phases. In one phase RPL increases, and
in the other phase it is stationary. The variation in fitness
across these phases is interesting. In the first phase the
fitness increases. In the second phase the fitness oscillates
but also ceases to increase (Figure 3). This is evidenced
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Figure 4 1/f Distribution
Note: The size of the avalanches of the changes are plotted with
respect to their frequency in a log-log plot and superposed with a
corresponding plot of a 1/f� function. Here � � 1.8.

although the evolutionary rule of change was not elicited
directly from the fitness function. This leads to the fol-
lowing:

PROPOSITION 3. Fitness can benefit from changes
even if the rules of evolution are not designed as an op-
timization algorithm for the fitness function.

The idea here is that the organization needs rules by
which to change or evolve over time. The application of
these rules may but need not lead to an improvement in
performance. These rules do not need to be consciously
designed around a fitness function to lead to organiza-
tional performance improvement. Thus, while evolution
may lead to increased overall fitness, it does not do so
because of intent. OT has generally tended to assume that
only successful firms evolve (see Levinthal and March
1987, March 1996, Carley and Lee 1998 for exceptions).
What CST implies is that all firms evolve, but not all
evolutions lead to successful adaptations. This may hold
some interest for organizational theorists. It suggests that
the system as a whole may and does exhibit properties
different from those of its constituent elements. An or-
ganizational system can exhibit rationality at the systemic
level that may run contrary to what a simple aggregation
of the behaviors of its boundedly rational units may sug-
gest. Models similar to the ones we have proposed may
provide hints about the dynamics underlying some tan-
talizing organizational puzzles—how are organizations
often more reliable than their composition of bias-prone
individuals may suggest? Why do gains in individual pro-
ductivity levels following the introduction of information
technology not manifest themselves as gains in produc-
tivity at the organizational level?

The level of stationarity of RPL is related to the archi-
tecture of the tree and is a measure of the maximum level
of performance that this kind of organization form can
achieve. To increase it further, alternative measures have
to be taken, like changing the shape of the tree. The dy-
namics of the evolution of the RPL may seem innocent.
But a closer analysis reveals that it climbs a “Devil’s stair-
case”, i.e., the space of its values is a Cantor set (a fractal).
The growth of RPL, which corresponds to a phase of
improvement of the performance of the organization,
goes through punctuated equilibria, i.e., periods of ap-
parent stagnation between periods of changes, in a man-
ner reminiscent of biological evolution. If one calls an
“avalanche” the succession of steps during which RPL
does not change, the system becomes stationary when the
avalanche becomes infinite. One can show that when the
“reference performance level” is increasing, the size of
the avalanches is roughly inversely proportional to their

frequency, i.e., it is “1/f ”5 (Figure 4). This is a signature
of SOC (Bak and Chen 1991) and suggests the following.

PROPOSITION 4. The dynamics of evolution of the
“reference performance level” is self-organized critical.

In the organizational context, this means that for a
given configuration of organizational units and intercon-
nections between them, there is a limit to growth in the
reference performance level. When dynamic equilibrium
is reached, the performance of the worst performing unit
cannot be improved any further. Once this point is
reached, performance can be improved only by changing
the configuration by way of number of units or the inter-
connections between them. Dynamic equilibrium might
help us examine the differences between emergent
change and planned change.

To identify dynamic equilibrium, organizational re-
searchers should attend carefully to the underlying pat-
terns and distributions in organizational phenomena. For
example, if the distribution of any feature of an organi-
zational system, such as performance of units in an or-
ganization, follows the 1/f law, it may suggest that some
adaptive process worthy of investigation is at play. Of
course, our earlier caveat that we need to consider alter-
native explanations for the 1/f law must be borne in mind.

Figure 4 shows the distribution of the size of the ava-
lanches of the changes when they are plotted against their
frequency in a log-log plot for a single run of the simu-
lation. As we can observe, there are large fluctuations
around the 1/f behavior. Multiple runs would average out
the fluctuations and result in a cleaner 1/f distribution.
This illustrates another important feature of SOC in that
kind of system: it is a statistical property. The fluctuations
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Figure 5 Performance Distribution Initially and When the
Steady State Begins

Note: Although there are large statistical fluctuations (the number of
routines is not very large), clearly the distribution of performances
shifts to higher values. This is evidence for dynamical self-
organization.

of the 1/f distributions reflect the stochastic character of
the processes involved. As noted earlier in this paper, the
relationship between 1/f and stochasticity is quite pro-
miscuous and complicates the interpretation of the emer-
gence of 1/f laws.

The assumptions underlying the evolutionary model
we used in this paper can be modified. It certainly would
change the details of the outcomes. But some fundamen-
tal results are robust. The rules of evolution do not try to
maximize the fitness function. They merely reflect the
desire to improve the perceived lowest level of perfor-
mance within the organization.

We conclude this section with an observation and some
speculations. The main observation is that it is possible
to have evolutionary models of organization which are
not optimization algorithms of a fitness function. Our first
speculation is that the dynamics of the reference perfor-
mance level may better reflect how an organization mea-
sures its own performance than an abstract fitness func-
tion. From an information processing viewpoint, it is
more realistic for organizations to focus on the specific
goal of improving the performance of their worst-
performing units than on the more diffuse objective of
maximizing performance. Second, the adaptability of an
organization is probably related to the dynamics of the
changes in performance. When there is change in the per-
formance of a unit, it affects the performance of all the
other units in the system. While this has not been captured
in the model, it does require the organization to exhibit
adaptability to such changes. Maximum adaptability of
the organization may correspond to a situation when
those changes build a self-organized critical system.

Clearly organizations have to make their ways between
two extremes: too few or too frequent large changes.
There must be an optimum mix of large and small
changes which maximizes the adaptability of organiza-
tions and may be related to the emergence of SOC. An
organizational example here is what is the right or optimal
rate of executive turnover or restructuring. If the analogy
with the heartbeat is at all relevant, it suggests that this
optimum mix, i.e. the mix which maximizes the adapt-
ability of the organization, could correspond to a 1/f dis-
tribution of the magnitude of organizational changes.
This is a pure speculation. But it can be tested against
empirical data.

Self-Organization
The evolutionary model discussed in the previous section
has another dynamic property of interest to CST. It also
displays what we will call “dynamic” self-organization,
as opposed to other forms of self-organization that we
discuss later. Figure 5 shows the performance distribution
initially and when the steady state begins.

After RPL stabilizes, i.e., when the dynamics of orga-
nizational changes becomes stationary, the evolutionary
model ceases to be self-organized critical. It is then “dy-
namically” self-organized. In this class of models, SOC
is a feature of the dynamics of change leading to a self-
organized state. Dynamic self-organization corresponds
to the spontaneous emergence of skewed distributions for
the performance levels. Self-organization in those sys-
tems is a statistical statement. It takes place in a repro-
ducible way with high probability, after many iterations.
It appears slowly, after the system has gone through sev-
eral metastable states (punctuated equilibria). The evo-
lutionary model described above displays “dynamic self-
organization”.

This kind of dynamic self-organization was originally
observed in a certain class of cellular automata6 and has
been a source of rather intense mathematical interest
(Derrida and Stauffer 1986b). It provides an example of
dynamics leading to a decrease of entropy in some sys-
tems (Wolfram 1984, 1983). However, the source of this
dynamics is unclear. Detailed studies of dynamic self-
organization reveal intriguing features. Its occurrence de-
pends on the degree of connectivity, i.e., the number of
sites with which one site interacts (Derrida and Stauffer
1986b).

Neither the self-organization seen in biology nor the
self-organization relevant for OT can be reduced to the

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

12
2.

25
3.

21
2]

 o
n 

10
 M

ay
 2

01
5,

 a
t 2

0:
17

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



BENOIT MOREL AND RANGARAJ RAMANUJAM Through the Looking Glass of Complexity

288 ORGANIZATION SCIENCE/Vol. 10, No. 3, May–June 1999

shape of the distribution of values of state variables
evolving separately. Life may have started slowly as in
dynamic self-organization. The first eucaryotic cells ap-
peared only 1.8 billion years ago. But there has been a
spectacular acceleration in the pace of evolution, as if it
were an important feature of the process. Most of bio-
logical evolution took place in the last 15% of current
earth history, since the Cambrian explosion 530 million
years ago, when the first complex multicellular organisms
appeared (Leakey and Lewin 1995). This suggests the
following:

PROPOSITION5. Dynamic self-organization does not
have the potential to explain the systematic tendency of
life towards increasing complexity at an accelerating
pace.

To explain the increased complexity and accelerating
pace, we need to consider “biological self-organization.”
It was Kauffmann (1993) who pointed out the possible
relevance of a theorem from random graph theory to the
explanation of the origin of life. In this theorem, Erdo¨s
and Rényi (Cohen, 1988) addressed the very academic
question of what happens to random graphs if the number
of vertices and the number of edgesN grow at a different
pace. What they have actually established is the existence
of “threshold functions.” The relation between this the-
orem and biology is not immediately obvious. Yet it turns
out that this theorem projects a very suggestive light on
the different forms of self-organization, on the origin of
life, and on what could be the origin of the acceleration
of the process and its tendency to lead to increasingly
complicated structures.

Consider a graph. It is made of vertices and the edges
joining them. If all then vertices of a graph involvingN
edges are joined to each other by one edge, there are
exactly N � � n(n � 1)/2 edges and the graph isn( )2

called “complete.” Concretely, the theorem shows that if
the number of edges,N grows like or faster than

(N n(k�2)/k�1), the probability of finding trees ofk�2/k�1n
orderk7 is asymptotically (i.e., whenn → �) equal to 18.
If n n2(k�2)/k�1 asymptotically, the probability of finding
a complete subgraph of orderk � 3 is 1.

Although it may look fastidiously technical, this result
has far reaching implications.9 It can be used to try to
understand how life started. It implies the possibility of
a phase transition in polymer biochemistry that could be
the first step towards the creation of living matter. Poly-
mers are the basic ingredient of life. When the number of
different polymers in a solution10 becomes large enough,
the probabilityP that at least one of them can catalyze
the synthesis of another one becomes significant and as-
ymptotically equal to one.11 In other words, there is then

“catalytic closure,” through the sheer effect of large num-
bers and interactivity. This was presumably the prelude
to the manufacture of larger and larger molecules which
eventually make living matter. This suggests that large
numbers play a fundamental role in life.

PROPOSITION6. The mere occurrence of large num-
bers of nodes in random graphs generates conditions for
self-organization which do not exist for small numbers.

While the effect of large numbers is relevant for self-
organization in biology, we need to be careful about in-
terpreting its implications for self-organization in orga-
nizations.

It is not at all clear what “large” means in the context
of social units. The large numbers discussed in physics
and biology are typically in the order of millions. In most
social contexts, such large numbers are difficult to con-
ceive. The Internet has created a new situation where mil-
lions of people can interact. The spontaneous emergence
of Internet communities could follow a dynamics along
the lines similar to biological self-organization. In most
organizations however, a size of a few thousands would
be considered large. Will the implications of large num-
bers make sense in such a context? One reason that large
numbers work in physics and biology is that they lead to
complex ties which in turn lead to self-organization.
However, in human beings the ties are already complex
(Wellman 1988). People typically have multiple roles,
and this introduces complexity in their interactions with
people. In the vocabulary of social networks, human ties
are “multiplex.” This may mean that the notion of what
is “large” and sufficient for self-organization in organi-
zations may have to scaled down to acknowledge the in-
herent complexity of such ties. In our current state of
knowledge, we are very far from being able to know
whether this is indeed true.

The self-organization in organizations does not require
a large number of agents. Organizations are made of hu-
man beings, i.e., very complicated functional units with
very complicated interactions. One way to think about
these units is in terms of subgraphs. In random graph
theory, self-organization is associated with the sponta-
neous emergence of connected subgraphs. A connected
subgraph describes a functional relation between several
constituents. It can be construed as a functional unit not
disconnected from other units. Examples in organizations
would be cliques and departments.

The more complicated the functional units are, the
more varied and complex the external connections they
can have. The reasoning of Erdo¨s and Re´nyi could be
extended to exotic graphs we will call “hypergraphs,”
where the vertices are functional units (i.e., aggregations
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of subgraphs) that can have many kinds of interactions
simultaneously. The probability of finding complete sub-
graphs of some sort in hypergraphs is very large, even
with a limited number of functional units. Functional
units of higher complexity and variety can be created by
building increasingly complex structures. At this stage,
this is pure speculation. But it is also a powerful frame-
work to conceptualize self-organization.

Connected graphs build functional units whose inter-
actions are more complex than those of individual verti-
ces. These functional units may be the building blocks of
organizational structure. This suggests that self-
organization leads to multinode conglomerations, which
is similar to the institutionalist notion of network struc-
turation (Powell and DiMaggio 1991). Random graphs
provide a space in which the dynamics of self-
organization takes place. The self-organizing dynamics
has still to be developed. A couple of decades ago, a
“dissipative self-organization paradigm” (Nicolis and
Prigogine 1977) was developed. The fundamental ingre-
dient of that approach is the observation that self-
organization as a dynamic process can take place only
out of equilibrium. When it was tentatively applied to OT,
one major finding was that this paradigm may be useful
to understand situations of turbulence when self-
organization leads to quieting (Smith and Comer 1994).
The turbulence created the conditions for the group dy-
namics to get out of its original equilibrium and to find a
new one as a different, quieter functional unit.

A self-organization materializing in an increasingly
complicated organizational architecture is not easily re-
producible with a paradigm based on dissipation only.
The dynamics out of equilibrium has to materialize into
increasing complexity. It is as if the new functional units
can be reached only through large perturbations that push
the system out of equilibrium. And once created, the func-
tional units tend to be robust. The concept of “functional
units” bears some similarities with the concept of adap-
tive agents (Holland 1995).

PROPOSITION7. Connectivity is an important param-
eter for dynamic self-organization. The interaction be-
tween complicated functional units may result in self-
organization of increasing complexity.

We can think of the graph as having several planes
where the nodes are in one plane and the functional units
resulting from the connections between the nodes are at
a higher plane. In this case, the increased complexity will
be observed in the interconnections among nodes as well
as functional units. If this is true, and can be extended to
organizations, it anticipates and predicts an important and
empirically observed trend: the emergence of structurally

complex “network organizations” which are neither mar-
kets nor hierarchies (Powell 1990, Eccles and Crane
1987).

This discussion of self-organization illustrates the com-
plexity and fertility of the interface between CST and OT.
What is referred to as self-organization in CST is a slow
and statistical dynamic process that bears little in com-
mon with what is seen in biology and OT. Random graph
theory is a powerful framework to discuss some funda-
mental features of biological self-organization. Admit-
tedly, the relation between random graph theory (as dis-
cussed in this paper) and OT is tenuous and raises more
question than it answers. Random graph theory could play
a more important role in CST, as it does in the study of
social networks in OT. It could provide a useful common
ground of research for both fields. At this stage of our
understanding of self-organization in CST, its best use
for OT may not be as an aid in the development of a
mathematical model supporting some assumptions, but as
a source for enriching the conceptualization of self-
organization.

This exercise may also serve as a useful framework to
generate interesting questions. For example, what hap-
pens to the dynamics of self-organization as the size of
the graph (or network) grows? What happens to interor-
ganizational relationships and organizational fields as size
increases? What effect does the introduction of technol-
ogy have on self-organization? One possibility is that the
introduction of new technology may result in a faster in-
crease in the rate of connections than in the number of
agents. This may have very different implications for self-
organization compared to a situation where technology
leads to a reduction the number of connections (e.g., ar-
tificial agents). Although there are no simple answers to
these questions, they do suggest the intriguing possibili-
ties raised by combining insights from graph theory to the
study of self-organization in networks.

Discussion
The preceding discussion raises a variety of methodolog-
ical and epistemological questions. Given the absence of
a commonly accepted formal structure for CST, research-
ers in OT must be cautious in borrowing pieces of CST.
Application of CST to OT must rely on mathematically
proven or computationally justified facts. Approaching
OT from a CST standpoint is a way to use mathematical
modeling in what is a human or social science. This is
not new in and of itself. Whenever dynamics is involved,
there is no good alternative to mathematical modeling.
As Simon (1987) observed, mathematics is useful not
only for quantitative analysis, “a common delusion,” but
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also and more importantly to analyze situations too com-
plex to be understood by words. Mathematical and com-
putational models are irreplaceable to test dynamic as-
sumptions, as words and concepts are not a good
instrument to analyze dynamic processes. This was abun-
dantly illustrated in physics, where one has just to com-
pare the physics of Descartes and Aristotle with the phys-
ics of Galileo and Newton.

But the use of mathematical models carries its own
epistemological complications. Researchers should be
careful in extending catch phrases from CST to OT. First,
the detours through mathematical modeling may intro-
duce biases in the analysis towards overemphasizing the
importance of dynamic processes in areas of their maxi-
mum applicability. Second, a mathematical model may
or may not be valid. An example of an invalid mathe-
matical model is one with too many parameters, which
makes the model like a black box, and an act of faith is
needed to believe in its “predictions.” Another kind of
invalid model involves uncontrolled or random assump-
tions. But unfortunately “validity” here is a bit like a sun-
set: the distinction between the red and the blue may not
be easily identifiable. Approaching OT from a CST stand-
point creates a mindset which may lead to biases. One
may be tempted to plug in CST concepts or to solicit
ambiguous facts.

An additional source of epistemological complication
is the fact that the mathematics of CST are much less
polished than other branches of mathematics, like dy-
namic system theory. The concepts used like SOC and
self-organization clearly need refinements. The choice of
CST models for use in OT can be based on misleading
or altogether irrelevant analogies. For example, if out of
a CA simulation of interactive agents, one recognizes an
emergent property which bears some resemblance with
something observed in human organizations, what is the
message? The interaction between human beings is una-
voidably far more complex than the interaction between
the agents of the CA. To what possible extent can the
outcome of a simplistic dynamics be construed as an “ex-
planation” for a far more complicated situation? Is the
word “allegoric” an adequate protection?

Still, CST can also be a very powerful instrument of
analysis. It can help in identifying the minimum set of
ingredients necessary to reproduce a robust observation.
It can be a laboratory to (in)validate dynamic assumptions
about the life of organizations and their interactions. It
provides powerful tools to test concepts like self-
similarity further than the anecdotal level. It may inspire
new hypotheses as suggested by the example of the origin
of adaptability. It may also lead to the development and
use of new powerful analytical tools. One can imagine

CA-based simulations which would allow us to discuss
much more cogently the life of communities, organiza-
tion, the emergence of hierarchies and their functions, etc.

The examples used in this paper were supposed to rep-
resent two different epistemological situations: SOC in
the dynamics of organizational changes and/or underly-
ing the size distribution of firms, expresses a mathemat-
ical regularity which is to a large extent measurable and
which may reveal something important about the life of
organizations and their interactions. This knowledge,
which could not have been guessed without the detour of
CST, could affect our understanding of the problem. If it
can be shown that adaptability is related to the SOC na-
ture of the changes in an organization, that could be an
important contribution of CST to OT.

The discussion about self-organization illustrates a
more complex epistemological situation. We did not do
an extensive analysis of self-organization in OT. We
merely pointed out that what CST has to offer is a far cry
from what OT needs. But in the process we try to convey
that CST has developed deep insights into what self-
organization entails, even if it may not have yet the math-
ematics to back them fully. At this stage, taking a CST
perspective with respect to self-organization provides a
standpoint, a set of biases or potential insights, something
closer to a state of mind than a rigorous methodology.

In conclusion, an important implication of this paper,
albeit undiscussed, is that the CST concepts such as self-
organization and SOC may be better understood by study-
ing them in an organizational context. Just as OT can
benefit from the CST emphasis on detecting and inter-
preting underlying patterns, CST can benefit from the OT
emphasis on explicating and elaborating underlying pro-
cesses. The bridge between the two fields goes both ways.
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Endnotes
1This distribution is observed only when the data is categorized such
that the firms in the low end (firms under size 25) are lumped together.
2The game of life consists of a few agents distributed on a square grid
(each site has eight neighboring sites). The rules are that when an agent
is connected to fewer than two neighbors it dies of loneliness. If it is
connected to three or more, it dies of being overcrowded. If three agents
surround an empty spot, they give birth to a new one. Alternative rules
can be invented.
3This is reminiscent of a Polya process, i.e., a stochastic process in-
volving a positive reinforcement proportional to the value of the vari-
able (Arthur 1995).
4They define routine as a “general term for all regular and predictable
behavioral patterns of firms [. . .] to include characteristics of firms that
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range from well specified technical routines for producing things,
through procedures for hiring and firing, ordering new inventory, or
stepping up production of items in high demand, to policies regarding
investment, research and development or advertising and business
strategies about product diversification and overseas investment” (p.
14).
5“1/f ” actually means 1/f� where� � 2.
6The so-called Boolean cellular automata are a special kind of dynamic
systems: Boolean means that the state of the systems corresponds to a
list of “one” and “zero.” The list of ones and zeros is updated at time
t � 1 from the knowledge of the state of the system at timet, through
a predetermined set of rules.
7A tree of orderk hask vertices joined together byk � 1 edges.
8If k � 3, the statement is that if the number of edges grows like the
square root of the number of points (N � n1/2, or limn→�N/n1/2 � c,
wherec is aconst� 0), at the limitn → �, the probability of finding
a tree of order 3 in any graphGn,N is asymptotically finite.
9n(k�2)/k�1 and n2(k�2)/k�1 are the “threshold functions.” A possible
illuminating use of this result is to apply it to the physical states of
matter: The solid phase corresponds to the case where the connectivity
is larger than the threshold functions for trees of the size of the crystal,
gas corresponds to the case where the connectivity is smaller than the
threshold function fork � 3 trees (N � n1/2), and the liquid corresponds
to an intermediate situation. Another potential example (although one
whose implications are unclear) is the observation that the brain has
1012 neurons and 1015 random connections or synapses. This implies
that by the sheer law of large numbers, the brain contains naturally
complete subgraphs of orderk � 3.
10For a given lengthM, the number of different polymers is:� 2M�1.
N is the number of ways the polymers interconnect, i.e.:

2M�(i�1)(M � i). The ratio of number of reactions by whichM�1N��i�1

polymers can interconnect to the number of kinds of polymersN�M
� 2, i.e., it increases with the size of polymers faster than the threshold
function of Erdös and Re´nyi.
11 (M�1) (M�1)(M�1)2 �p(M�1)2P � 1 � (1 � p) � 1 � e .
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